Hitachi Real-time Tissue Elastography:

Publications & International Communications

Clinical Abstracts
Hitachi Real-time Tissue Elastography; applications for Thyroid and Cervical Lymph Nodes
UTILITY OF THE ULTRASOUND ELASTOGRAPHIC SYSTOLIC THYROID STIFFNESS INDEX IN REDUCING FINE-NEEDLE ASPIRATIONS.

Dighe M, Kim J, Luo S, Kim Y.

Department of Radiology, University of Washington Medical Center, Seattle, WA 98195, USA.
dighe@u.washington.edu

Abstract

OBJECTIVE: The purpose of this study was to evaluate whether ultrasound elastography performed by using carotid pulsation as a compression source and generating the systolic thyroid stiffness index (STSI) can be used as a pre-fine-needle aspiration (FNA) screening tool. METHODS: Ultrasound data previously acquired from 62 thyroid nodules in 59 patients who underwent a thyroid FNA were used. Pulsation from the carotid artery was used as the compression source, and the strain was calculated offline. A metric called the STSI was computed for each nodule during systole. On the basis of the derived STSI value, thyroid nodules were retrospectively classified into 2 types: I, no FNA (observation only); and II, FNA. RESULTS: The STSI value of malignant nodules (n = 12) was significantly higher than that of benign nodules (n = 39; P < .00002). Using an STSI cutoff value of 10, 31 nodules were classified as type I, all of which were benign, whereas 20 nodules were classified as type II, 12 malignant and 8 benign, with sensitivity of 100% and specificity of 79.4%. This suggests that ultrasound elastography could have screened out 31 type I nodules, reducing the number of FNAs by 60.8%. CONCLUSIONS: Thyroid ultrasound elastography has the potential to substantially reduce the number of FNA biopsies by detecting type I benign nodules. Patients with suspicious type II nodules would be referred for an FNA. Future prospective studies are needed to confirm the efficacy of thyroid ultrasound elastography as a triage tool to FNA.

THYROID ELASTOGRAPHY MAY REDUCE UNNECESSARY FNA BIOPSIES

By Erik L. Ridley
AuntMinnie staff writer
April 21, 2010

A significant percentage of thyroid nodule fine-needle aspiration (FNA) biopsies lead to benign findings. But use of thyroid elastography may avoid the need for biopsy in many of these patients, according to research published in the April issue of the Journal of Ultrasound in Medicine.

A research team led by Dr. Manjiri Dighe of the University of Washington Medical Center in Seattle found that quantitative measurements generated from ultrasound elastography could be used to reliably characterize a substantial amount of benign nodules. As a result, only nodules with suspicious findings would go on to receive FNA biopsy.

"With that approach, we may be able to decrease the number of FNA biopsies by 60%," Dighe told AuntMinnie.com. "The ability to confidently diagnose a benign nodule is the most important benefit of elastography."

The researchers sought to determine if a systolic thyroid stiffness index (STSI) -- generated from ultrasound elastography performed by using carotid pulsation as a compression source -- could serve as a pre-FNA biopsy screening tool. They gathered ultrasound data previously acquired from 62 thyroid nodules in 59 patients who had received a thyroid FNA (J Ultrasound Med, April 2010, Vol. 29:4, pp. 565-574).

The ultrasound elastography studies were performed prior to the FNA procedure using a Hi Vision...
5500 ultrasound scanner (Hitachi Medical Systems America, Twinsburg, OH) with a 7.5-MHz linear-array transducer. Ten patients were excluded from the study due to inadequate FNA sample results, and one was left out due to inadequate elastography data acquisition.

The sonographers who acquired the studies had more than 10 years of ultrasound scanning experience, as well as more than two years of experience in acquiring elastographic data, according to the researchers. Ultrasound data were processed offline using an angular strain method for elastography; about 200 strain images were generated.

The group then calculated an STSI value by dividing the strain value near the carotid artery at systole by the corresponding strain value in the nodule. A higher STSI value suggests a stiffer thyroid and an increased likelihood of malignancy.

The nodules were classified into two FNA screening categories based on the STSI value. The first category (type I) would receive observation only and no FNA biopsy, and the second category (type II) would undergo biopsy.

The researchers determined the cutoff STSI value to differentiate the nodules based on receiver operator characteristics (ROC) analysis.

At 18.43 ± 5.99, the mean STSI for the 12 malignant nodules was significantly higher than the mean index of 6.82 ± 3.54 for the 39 benign nodules \((p = 0.00002) \). The area under the ROC curve for diagnosing papillary carcinoma was 0.942 for distinguishing between malignant and benign nodules.

From the ROC analysis, the researchers found that a cutoff index value of 10 yielded 100% sensitivity, 79.5% specificity, 60% positive predictive value, and 100% negative predictive value.

Based on the researcher's guidelines, 60.8% of the biopsies could have been avoided.

"Only 20 (8 benign and 12 malignant) nodules that were classified as type II would have undergone an FNA," the authors wrote. "Thus, by using thyroid ultrasound elastography as a triage tool, it would be possible to limit FNAs to only type II (high probability of malignancy) nodules, thereby decreasing the percentage of benign nodules being referred for an FNA."

The authors noted that future prospective studies will be needed to confirm elastography's efficacy as a triage tool to FNA.

By Erik L. Ridley
AuntMinnie.com staff writer, April 21, 2010

11-06-10
REAL-TIME ELASTOGRAPHY AND CONTRAST-ENHANCED ULTRASOUND FOR THE ASSESSMENT OF THYROID NODULES.

OBJECTIVE: Work-up of thyroid nodules remains challenging. Recent technologies enable determination of tissue elasticity and perfusion using ultrasound devices. The aim of the present study was to evaluate real-time elastography (RTE) and contrast-enhanced ultrasound with Sonovue (CEUS) for the differentiation of benign and malignant thyroid nodules.

MATERIALS AND METHODS: Inclusion criteria were: nodules >/=1 cm, non-functioning or hypo-functioning on radionuclide scanning, and cytological/histological assessment. All patients received conventional ultrasound, RTE and CEUS. RTE was classified as: Elasticity-Score (ES)1=soft, ES2=predominantly soft, ES3=predominantly hard, ES4=hard nodule. CEUS-video clips were digitally recorded and analyzed using time-intensity-curves within selected regions-of-interest.

RESULTS: Fifty-three nodules in 50 patients were available for analysis. Forty-six nodules were benign on cytology/histology, 6 nodules were papillary carcinoma and one nodule was a follicular carcinoma. Nodule margin irregularity was the ultrasound pattern most predictive of malignancy with sensitivity 57% (95% confidence interval: 18-90%) and specificity 85% (71-94% p<0.05). When using ES3&4 for the diagnosis of malignant nodules sensitivity and specificity were 86% (42-99.7%) and 87% (75-95%), respectively (p=0.0003). The only malignant nodule missed with RTE was a follicular carcinoma. Sensitivity for the diagnosis of papillary carcinoma therefore was 100%. No specific CEUS pattern could be identified to differentiate between benign and malignant nodules.

CONCLUSIONS: RTE seems to be a useful tool in the work-up of thyroid nodules to exclude papillary thyroid cancer. However, follicular carcinoma remains a challenging problem. CEUS did not improve the characterization of thyroid nodules in this preliminary study.

Exp Clin Endocrinol Diabetes. 2009 Oct 23. [Epub ahead of print]

USEFULNESS OF ULTRASOUND ELASTOGRAPHY IN IDENTIFYING THYROID MALIGNANCY
Dr Cristina Ghervan, Dr Dana Dumitriu, Dr Carolina Botar-Jid, Dr Sorin Dudea, Dr Valentin Munteanu, Dr Iacob Domsa, Dr Ileana Duncea, University of Medicine and Pharmacy, Romania

Background and objective: One of the key features of thyroid gland cancer evaluated at palpation is the degree of firmness: malignant lesions tend to be much harder than benign ones. US elastography is combining the diagnostic advantages of high-frequency US examination and the accuracy of thyroid cancer diagnosis based on the lesion’s stiffness. The aim of our prospective study was to evaluate the elastographic appearance of thyroid gland tumors and to explore the sensitivity and specificity of US elastography for differential diagnosis of thyroid cancer, with histopathologic analysis as a reference standard

Material and Methods: A total of 34 patients were included in the study, presenting one or several suspicious thyroid nodules. Elastography was performed by the same examiner with the same settings of the machine. The nodules were classified in five classes of tissue stiffness. All the patients were operated and the results of elastography were compared with histopathologic results.

Results: The 34 patients had 99 thyroid nodules that were investigated. 65 were soft in elastography (score 1-3) and 34 were hard (score 4-5). At pathological exam all the 65 soft nodules were benign and from the 34 hard nodules 17 were benign and 17 malignant. In 4 patients multiple malignant nodules were found.

Conclusion: Elastography showed a sensitivity of 100% and a specificity of 79% in diagnosing malignant nodules. With a positive predictive value (PPV) of 50% and a negative predictive value (NPV) of 100% it seems more valuable in excluding malignancy than in affirming it.

12th World Congress of the World Federation for Ultrasound in Medicine and Biology, 30th August – 3rd September 2009, Sydney, Australia

11-06-10
Background: Preoperative evaluation is very important for the diagnosis of parathyroid carcinoma. However, fine needle aspiration cytology (FNAC) is not recommended because of its possibility of tumor implantation. So only clinical data have been considered as usable indicator of malignancy. We reported high Depth-Width (DW) ratio (1) of a tumor is an important indicator of malignancy. Due to its high sensitivity, the specificity of DW ratio was slightly poor because large part of benign tumors sometimes showed high DW ratio. So we introduced ultrasound Elastography, in addition to the normal B-mode ultrasound evaluation including measurement of DW ratio, to improve the specificity.

Material and Methods: First of all, we performed B-mode ultrasound examination for patients with parathyroid enlargement and calculated its DW ratio. Malignancy was suspected for a tumor with DW ratio 1 or a very large tumor that its DW ratio could not be calculated. We used thyroid gland as a control tissue, and compared the elasticity between the two. We made diagnosis between benign or malignant tumors based on the elasticity of parathyroid compared to thyroid gland. The operation was performed based on the diagnosis.

Results: Among the four cases which were suspected of malignancy by B-mode ultrasound examination, two cases were soft and the other two cases were hard compared to thyroid gland. Pathological examination of these four cases showed that the former two cases were adenoma and the later two cases were adenocarcinoma.

Conclusion: Ultrasound Elastography is easy to perform and offers additional information to conventional ultrasound for parathyroid carcinoma detection.

12th World Congress of the World Federation for Ultrasound in Medicine and Biology, 30th August – 3rd September 2009, Sydney, Australia

__

CLINICAL EVALUATION OF ELASTOGRAPHY FOR THE DIFFERENTIAL DIAGNOSIS OF THYROID FOLLICULAR TUMORS
Nobuhiro Fukunari, Kazushige Arai, Akio Naakamura, Tomomi Yamazaki, Satoshi Sakaue, Kenji Nakano

Purpose: The diagnosis and management of follicular cancer of the thyroid gland remains a controversial topic. The aim of this study was to evaluate the clinical usefulness of Elastography imaging for the differential diagnosis of thyroid follicular lesions.

Methods and Materials: 133 follicular tumors were examined by Elastography. Papillary cancers, other types thyroid malignancies or hot nodules were excluded from this study. The images of thyroid follicular lesions were recognized as four typical patterns as follows: Pattern 1(P1): nodule is relatively homogenous and colored with light green. Pattern 2(P2): the center of nodule is colored with green and its periphery is colored with blue. Pattern 3(P3): nodule is mixed-colored with light green and red. Pattern 4(P4): the whole tumor is displayed in blue.

Results: All the follicular tumors were surgically and histopathologically diagnosed finally. In this series, 58 hyperplastic nodules, 33 follicular adenomas and 42 follicular cancers (28 Minimally invasive, 14 Widely invasive) were found. Of the 42 follicular cancers, 31 cases were P2, which was occupied 73.8%. Assuming Pattern 2 to be malignant and others to be benign, 87 of 91 benign tumors and 31 of 42 follicular cancers were accurately diagnosed, yielding a sensitivity of 78.8%, a specificity of 95.6%, and an accuracy of 90.2%.

Conclusion: Elastography can provide new useful information for the differential diagnosis of thyroid follicular tumors and has a capability to improve the diagnostic specificity and accuracy than that of our former studies of color-Doppler examination.

12th World Congress of the World Federation for Ultrasound in Medicine and Biology, 30th August – 3rd September 2009, Sydney, Australia

__
REAL-TIME ULTRASOUND ELASTOGRAPHY IN THE DIFFERENTIAL DIAGNOSIS OF BENIGN AND MALIGNANT THYROID NODULES
Yurong Hong, Xueming Liu, Zhiyu Li, Xiufang Zhang, Meifeng Chen, Zhiyan Luo.

Objective. The purpose of this study was to evaluate the diagnostic utility of real-time ultrasound elastography in differentiating benign from malignant thyroid nodules.

Methods. A total of 90 consecutive patients with thyroid nodules who were referred for surgical treatment were examined in this prospective study. One hundred forty-five nodules in these patients were examined by B-mode ultrasound, color Doppler ultrasound, and ultrasound elastography. The final diagnosis was obtained from histologic findings. Tissue stiffness on ultrasound elastography was scored from 1 (low stiffness over the entire nodule) to 6 (high stiffness over the entire nodule and surrounding tissue).

Results. On real-time ultrasound elastography, 86 of 96 benign nodules (90%) had a score of 1 to 3, whereas 43 of 49 malignant nodules (88%) had a score of 4 to 6 (P < .001), with sensitivity of 88%, specificity of 90%, a positive predictive value of 81%, and a negative predictive value of 93%. The predictivity of ultrasound elastographic measurement was independent of the nodule size. High sensitivity (88%) and specificity (93%) were also observed in 68 nodules that had a greatest diameter of 1 cm or less.

Conclusions. Real-time ultrasound elastography is a promising imaging technique that is useful in the differential diagnosis of thyroid cancer.

DIFFERENTIAL DIAGNOSIS OF BENIGN AND MALIGNANT THYROID NODULES AT ELASTOSONOGRAPHY.
Rubaltelli L, Corradin S, Dorigo A, Stabilito M, Tregnaghi A, Borsato, S, Stramare R.

Dpt. of Medical Diagnostic Sciences and Special Therapies, University of Padova.

PURPOSE: Ultrasound of the neck detects a large number of non-palpable thyroid nodules in the population, but it offers poor diagnostic accuracy (the presence of microcalcifications is the only statistically significant criterion indicative of malignancy). The aim of this study is to evaluate elastography, a technique which allows differentiation between pathological and normal tissue by determining its hardness and which could also prove useful in the characterisation of thyroid nodules.

MATERIALS AND METHODS: In this prospective study, 51 thyroid nodules in 40 consecutive patients were examined (25 women, 15 men, mean age +/- SD, 54 +/- 13.4). Elastosonography was performed by real-time, free-hand technique, using Logos HiVision equipment with a 10 MHz transducer and lesions were classified and scored in 4 classes of hardness. All patients were also examined by grey scale high frequency ultrasound and colour Doppler. Final diagnoses were obtained from cytological and/or histological evaluation.

RESULTS: Final diagnoses revealed 11 malignant and 40 benign nodules. Only in two cases ultrasound demonstrated signs useful for a differential diagnosis (intrinsic microcalcifications). Correct differentiation of malignant from benign nodules was obtained by elastosonography in 43 / 51 cases with 5 false positives (FP) and 3 false negatives (FN). Specificity, sensitivity and accuracy were 87.5 %, 81.8 % and 86.2 %, respectively. Predictive negative value (PNV) and predictive positive value (PPV) were 94.5 % and 64 % area under the curve (AUC) 0.86.

CONCLUSION: Elastosonography provides an interesting contribution to the differentiation of malignant and benign thyroid nodules. Particularly worthy of mention is that an entirely elastic nodule pattern was observed only in relation to benign nodules, a result which would suggest that immediate recourse to FNAB might be avoided.

11-06-10
INTEROBSERVER AGREEMENT AT THE MALIGNANT THYROID NODULES WITH CONVENTIONAL ULTRASOUND (US) AND US ELASTOGRAPHY: PROSPECTIVE STUDY

S. Park; Incheon/KR

Purpose: To investigate interobserver agreement at the malignant thyroid nodules with conventional B-mode US and real-time free hand US elastography.

Methods and Materials: Between December 2007 and February 2008, 42 patients (19-73 years; 45.0± 12.2 years) with 52 thyroid nodules were examined with conventional B-mode US and real-time free hand US elastography. All the patients were scheduled to undergo thyroid surgery due to thyroid nodule having been proven to be malignant on aspiration cytology. Three experienced, board certified radiologists independently performed conventional US and elastography and analyzed US images. Analysis in conventional US included composition (solid, cyst, mixed-echoic, sponge), nodular echogenicity (hyperechoic, isoechoic, hypoechoic, marked hypoechoic), margin (well-circumscribed, microlobulated or irregular), calcification (micro, macro, negative, mixed), shape (parallel, non-parallel) and final assessment (cyst, probably benign, low suspicious, suspicious). Ueno classification and odds ratio were made by using US elastography. Interobserver agreement was evaluated with Spearman correlation analysis except the area ratio (using Pearson correlation analysis).

Results: Statistically significant (p< .05) concordance between 3 radiologists was found for most US features except for nodular echogenicity and margin of thyroid nodules on conventional US. The highest value of concordance was achieved in composition, followed by underlying parenchymal echogenicity, shape, calcification and final assessment. The least concordant finding was margin and nodular echogenicity on conventional US. However, there was no stastically significant concordance in Ueno classification and area ratio on elastography.

Conclusion: Conventional US made stastically significant concordance between radiologists in most of US features; however, US elastography did not make reliable interobserver agreement at malignant thyroid nodule.

European Congress of Radiology, March 6 – 9th, 2009, Vienna, Austria

THYROID NODULE EVALUATION WITH GRAYSCALE ULTRASOUND, COLOR DOPPLER, AND ELASTOGRAPHY: AN INTERNATIONAL MULTICENTER TRIAL

Rick Feld (co-author F Flemming)

PURPOSE
To determine if the combination of grayscale ultrasound imaging (US), color Doppler imaging (CDI) and Elastography can improve the characterization of thyroid nodules as benign or malignant.

METHOD AND MATERIALS
Patients from two different institutions, one in the United States and one in Japan, scheduled either for fine needle biopsy or surgery of a suspicious thyroid nodule were evaluated with US, CDI and Elastography. All examinations were performed on an EUB-8500 scanner (Hitachi Medical Corporation, Tokyo, Japan). A total of 100 nodules were evaluated, 50 from each institution. Still images and video clips were digitally recorded for interpretation by 4 independent, experienced, blinded readers. Each nodule was graded in random order, by all 4 readers, on a 5 point scale (definitely benign to definitely malignant), based on each US mode separately and then based on all three US modes, combined. Based on final pathology, sensitivities, specificities, and accuracies were calculated and compared, using receiver operating characteristics (ROC) analysis and McNemar's test for correlated proportions.

RESULTS
Pathology proved 81 benign nodules and 19 malignancies. Whe comparing the results of each reader, for one reader, the highest accuracy was achieved with Elastography, 77%, and with all three modes combined, 83%, which was significant (p=0.005), however for the other three readers, there was no significant difference in the three modes. Whe comparing the results of each mode, one reader achieved highest accuracy with color Doppler (90%), which was significant (p<0.002), one reader was more
accurate than the other readers in gray scale (89%) (p=0.002), three readers were more accurate than the fourth in Elastography (p<0.05), and two readers were more accurate than a third using all three modes (p<0.01).

CONCLUSION
A combination of gray scale ultrasound, color Doppler imaging and Elastography has the potential to improve the characterization of thyroid nodules as benign or malignant. However, there remains high inter-observer variability. More research if necessary to determine the ultimate utility of Elastography.

CLINICAL RELEVANCE/APPLICATION
Characterization of thyroid nodule as benign or malignant in order to determine the necessity to proceed with biopsy.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA

THE ULTRASOUND ELASTOGRAPHY FOR THE INDETERMINATE THYROID NODULES IN CONVENTIONAL ULTRASOUND

Jeong Seon Park

PURPOSE
To determine the usefulness of real-time freehand US Elastography to differentiate malignant from indeterminate thyroid nodules in conventional US (CUS), with pathologic diagnosis as the reference standard

METHOD AND MATERIALS
Between Oct. 2007 and Jan. 2008, conventional ultrasonography (CUS) in 78 thyroid nodules (61 benign; 17 malignant) of 56 patients (F: M=71: 7, mean age of 50.2 years) who were scheduled to undergo thyroidectomy showed indeterminate findings; no malignant sign (taller shape, speculated margin, calcification except rim-type, markedly hypoechoic), and not-definite benign (cyst or predominantly cystic nodule). The elasticity image was obtained with light compression and the elasticity score (1-5) according to the degree and distribution of strain. The proportion of no strain (PNS) per each nodule was assessed. Mean E scores and proportion of NS in benign and malignant nodules were examined by using a Student t-test. We evaluated the diagnostic performance to differentiate malignancy from benign lesions by using a receiver operating characteristic analysis to compare the area under the curve, sensitivity, specificity and accuracy at the cut-off value.

RESULTS
For E score, the mean + standard deviation was 2.9 + 0.8 for malignant lesions and 2.0 + 0.5 for benign lesions (P<.001). For PNS, the mean + standard deviation was 63.2 + 27.8 for malignant lesions and 21.0 + 20.4 for benign lesions (P<.001). The area under the curve of E score and PNS was 0.814 and 0.884. There was no significant difference of AUC between E score and PNS (p=0.143). Sensitivity, specificity, and accuracy of E score at the cut-off value between 2 and 3 were 70.6%, 85.2%, and 76.0%, respectively. Those of PNS at the cut off value of 20% were 88.2%, 77.0%, and 78.2%, respectively.

CONCLUSION
For the differential diagnosis of indeterminate thyroid nodules in CUS, US Elastography would be valuable.

CLINICAL RELEVANCE/APPLICATION
For the thyroid nodules with indeterminate findings of CUS for, US Elastography may be useful as an adjunctive method to further categorize the nodules.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA

11-06-10
Ultrasound elastography may be useful as an adjunct for the challenging task of evaluating thyroid nodules, according to a pair of recent studies.

In the first study, a multicenter trial concluded that combining elastography with grayscale ultrasound and color Doppler offers the potential of improving the characterization of thyroid nodules. Meanwhile, a separate Korean study also determined that elastography was useful in providing differential diagnosis of indeterminate thyroid nodules.

"We've got a ways to go, but I think there's promise on the horizon for this rather vexing topic," said Dr. Rick Feld of Thomas Jefferson University (TJU) in Philadelphia. He presented the research during a talk at the 2008 RSNA meeting in Chicago.

Seeking to determine if the combination of the three ultrasound techniques could improve the characterization of thyroid nodules as benign or malignant, a research team led by Feld studied 100 nodules from patients scheduled for fine-needle biopsy or surgery of a suspicious thyroid nodule. Fifty nodules were contributed by TJU, while fifty were from a Japanese institution. Of the 100 nodules, pathology indicated that 81 were benign and 19 were malignant.

All three ultrasound techniques were performed using an EUB-8500 ultrasound scanner (Hitachi Medical, Tokyo). Still images and video from each examination were digitally recorded and interpreted by four independent, experienced, and blinded readers.

The readers rated each nodule in random order on a five-point scale ranging from definitely benign to definitely malignant. The accuracy of each reader was measured first based on their use of each ultrasound mode alone, then on a combination of all three, according to Feld.

In the combination analysis, two readers were more accurate than a third reader using all three modes (p < 0.01).

In analyzing the data by reader, one reader achieved their highest accuracy with elastography (77%) among the individual modes as well as with all three modes combined (83%), Feld said.

In analyzing the data by mode, one reader achieved the highest accuracy with color Doppler (90%), a difference that was statistically significant (p < 0.002). One reader was more accurate than the other readers in grayscale (89%) (p = 0.002), while three readers were more accurate than the fourth in elastography (p < 0.05).

In examining reader variability, elastography produced the highest intraclass coefficient (0.44-0.63), representing a higher level of agreement among readers. Color Doppler had the lowest level of reader agreement (intraclass coefficient of 0.22-0.48), while grayscale ultrasound occupied the middle ground (intraclass coefficient of 0.32-0.53).

"There is interobserver variability in all three [methods], but it turns out that elastography did the best of all three," Feld said. "With all three combined, [interobserver variability was lower] than each of the three alone."

More research is warranted to determine the ultimate clinical utility of elastography when used in combination with other modalities, he said.

In a related presentation at the 2008 RSNA meeting, researchers from Hanyang University Hospital in Seoul, South Korea, found ultrasound elastography to be useful as an adjunctive method for categorizing indeterminate thyroid nodules.

The Hanyang research team prospectively studied 56 consecutive patients with 78 thyroid nodules (61 benign, 17 malignant) between October 2007 and January 2008. All patients were scheduled to undergo thyroidectomy and had indeterminate findings on conventional ultrasound.

Indeterminate findings included no malignant signs (taller shape, spiculated margin, calcification except rim type, and markedly hypoechoic) and the lack of definitely benign signs (cyst or predominantly cystic nodule), according to presenter Dr. Jeong-Seon Park.

Elasticity images were obtained with light compression, and an elasticity (E) score was calculated based on the Tsukuba Elasticity Score of 1 to 5 according to the degree and distribution of tissue strain, Park said. The proportion of no strain (PNS) was also assessed.

The researchers then examined the mean E scores and PNS in benign and malignant nodules using a Student's t-test. The technique's ability to differentiate malignant from benign nodules was evaluated utilizing a receiver operator characteristics (ROC) analysis to compare the area under the curve (AUC), sensitivity, specificity, and accuracy, according to Park.
The differences in mean E score and mean PNS were statistically significant ($p < 0.001$). The AUC was 0.814 for E score and 0.884 for PNS. The researchers found no statistically significant difference in the AUC between E score and PNS ($p = 0.143$).

The E score between 2 and 3 led to a sensitivity of 70.6%, specificity of 85.2%, and accuracy of 76%, according to the researchers. Analyzing lesions using the PNS measurement yielded a sensitivity of 70.6%, specificity of 85.2%, and accuracy of 78.2%.

“Although thyroid nodules had indeterminate findings in conventional ultrasound, the elasticity was significantly different between malignant and benign nodules,” Park said.

THYROID US AND ELASTOGRAPHY USING CAROTID ARTERY PULSATION: UTILITY OF A COMBINED APPROACH IN DIAGNOSIS AND MANAGEMENT

Manjiri Dighe

PURPOSE

To compare accuracy of ultrasound and Elastography of the thyroid using carotid artery pulsation as the compression source in diagnosis and management of thyroid nodules.

METHOD AND MATERIALS

A IRB approved study was conducted at the University of Washington comparing the thyroid ultrasound to Elastography. 59 patients scheduled for an ultrasound-guided FNA had participated in the study. Ultrasound was performed on IU-22 (Philips, Bothell, WA) machines and Elastography was performed on Hitachi EUB - 5500 machine prior to the FNA. Strain images were generated off-line and then compared with the FNA results. A quantitative thyroid stiffness index (TSI) was computed as follows: TSI = Strain near carotid artery / Lowest strain in the thyroid nodule. The ultrasound images were retrospectively reviewed by two experienced reviewers who were blinded to the final FNA results. The ultrasound images were scored from 1 to 5 based on preset parameters with increasing suspicion of malignancy. The reviewers were asked to suggest either FNA or follow up based on the imaging characteristics and Society or Radiologists in Ultrasound guidelines.

RESULTS

TSI for papillary carcinoma was higher than other lesions ($p=0.02$). There was significant discordance between the diagnosis and grade given by the ultrasound features between the reviewers as well as between the suggestions given by the reviewers. Using Elastography TSI, only there was a good concordance with the FNA diagnosis. Results are as follows: Concordance in diagnosis for reviewer 1 - 64%, Concordance in diagnosis for reviewer 2 - 55%, Discordance in diagnosis between reviewers - 33.33%, Discordance in suggestion (FU or FNA) - 35.2%, TSI concordance with diagnosis using a cut-off of 18 - 77.7%, Decrease in the number of FNAs on using a combined approach - 37%, Accuracy on using a combined approach compared to only ultrasound appearance to suggest FNA - 79.6%.

CONCLUSION

Our study results indicate Elastography by pulsation of the carotid artery can serve as a repeatable and operator-independent compression source for thyroid Elastography. A combined approach of using the ultrasound features and Elastography decreased the number of FNA procedures and increased the accuracy.

CLINICAL RELEVANCE/APPLICATION

A combined approach of using ultrasound features and Elastography could potentially decrease the number of thyroid FNAs as well as increase the accuracy in diagnosis.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA
ULTRASOUND ELASTOGRAPHY FEATURES OF MAJOR SALIVARY GLAND TUMORS

Dana Dimitriu

PURPOSE
Elastography is increasingly used in diagnosing tumors of the breast, thyroid gland or prostate. The aim of this ongoing study is to assess whether or not Elastography is helpful in increasing the diagnostic specificity of imaging in salivary gland tumors, since it has been proven that 2D and Doppler US, CT and even MRI are not very specific in this pathology.

METHOD AND MATERIALS
Over the course of the last year, 23 patients with a total of 25 salivary gland lesions were examined. All patients presented with enlargement of one or more salivary glands; 22 of these presented with enlargement of the parotid region and one with enlargement of the submandibular region. The examination of each patient included grey-scale and Doppler ultrasound, followed by the elastographic examination, using the same specific protocol, developed in our department, for each patient. The elastographic appearance of the tumor was correlated with the pathology report, after surgical excision of the lesion.

RESULTS
Most of the tumors in the study group were benign: pleomorphic adenomas (the most frequent salivary gland tumors) and Warthin tumors. The elastographic aspect for both of these tumors was most frequently that of lesions with heterogeneous elasticity, but never that of overall rigidity. The stiffest areas were located in the periphery of the tumor in pleomorphic adenomas. Warthin’s tumors did not have any typical elastographic features in comparison to pleomorphic adenomas. Malignant tumors presented more extensive areas of increased tissue stiffness; extension of the stiffness beyond the grey-scale border of the tumor was noted in several cases, but it is yet unclear whether this might be considered a feature of malignancy, as in the case of breast cancer.

CONCLUSION
Overall, the elastographic appearance of salivary gland tumors does not seem to fit into a definite pattern, such as the ones already described for breast tumors. So far, it is unlikely that Elastography might help in establishing the differential diagnosis between the various histological types of salivary gland tumor. However, it may raise the suspicion of malignancy in cases where the 2D image is inconclusive or falsely reassuring.

CLINICAL RELEVANCE/APPLICATION
Combining Elastography with 2D and Doppler ultrasound might improve the specificity of imaging in salivary gland tumors; a correct pre-operative diagnosis helps determine the best surgical approach.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA

CLINICAL APPLICATION OF ULTRASOUND (US) ELASTOGRAPHY IN THYROID NODULES

Jeong Seon Park

PURPOSE
To evaluate the diagnostic performance of real-time freehand US Elastography in differentiating malignant from benign thyroid nodules, with pathologic diagnosis as the reference standard.

METHOD AND MATERIALS
Between Oct. 2007 and Feb. 2008, conventional ultrasonography (CUS) and real-time US Elastography were performed in 226 thyroid nodules of 128 patients who were scheduled to undergo thyroidectomy. We excluded 23 lesions because of poor quality of strain images. Finally, 203 thyroid nodules (117 malignant; 86 benign) of 114 patients (F: M=101:13, mean age of 47.8 years) were included. According to the findings of grey-scale US, the result of CUS were divided into three...
categories; benign, indeterminate, and malignancy. The elasticity (E) score was assigned from 1 to 5 according to the degree and distribution of strain induced by light compression. The proportion of no strain (PNS, %) per each nodule was assessed. Mean E scores and PNS were examined by using a Student t-test. We evaluated the diagnostic performance to differentiate malignancy from benign lesions by using a ROC analysis to compare the area under the curve, sensitivity, specificity and accuracy at the optimal cut-off value.

RESULTS
For E score, the mean + standard deviation was 3.7 + 1.0 for malignant lesions and 2.0 + 0.7 for benign lesions (P<.001). For PNS, the mean + standard deviation was 82.3 + 24.4 for malignant lesions and 23.3 + 23.6 for benign lesions (P<.001). The area under the curve of CUS, E score and PNS was 0.864, 0.899, and 0.936, respectively. The AUC of PNS was significantly higher than CUS (p=.004) or E score (p=.004). There was no significant difference of AUC between CUS and E score (p=0.181). Sensitivity, specificity, and accuracy of CUS at the cut-off value between indeterminate and malignancy were 83.6%, 86.0%, and 84.6%, respectively. Those of E score at the cut-off value between 2 and 3 were 88.8%, 79.1%, and 82.5%, respectively. Those of PNS at the cut-off value of 50% were 87.1%, 88.4%, and 87.5%, respectively.

CONCLUSION
For the differential diagnosis of thyroid nodules, the diagnostic performance of elasticity score or the proportion of no strain area had at least equivalent value compared to CUS.

CLINICAL RELEVANCE/APPLICATION
For the differentiation of malignant thyroid nodules from benign lesions, US Elastography may be useful as an adjunctive method.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA

SONOELASTOGRAPHY OF SUPERFICIAL LYMPH NODE ENLARGEMENT: BENIGN VS. MALIGNANT

Botar-Jid C1, Fodor D2, Dudea SM1, Ciurea A1, Papita A2, Vasilescu D1
1Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca; 22nd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca

Aim: The aim of the study is to assess the diagnostic role of sonoelastography in differentiating benign from malignant superficial lymph nodes.

Method: The study group included 35 patients examined between May 2007 - January 2008. All patients presented palpable cervical, supraclavicular, axillary and/or inguinal lymph nodes. Total of 48 lymph nodes were assessed. Ultrasonography (US) was carried out with a Hitachi EUB 8500 equipment. Gray-scale US, power Doppler and sonoelastography was performed in each patient. Standardized acquisition parameters were used during the elastographic examination. The elastographic appearance of the lymph nodes was assessed qualitatively based on a five type scale used in breast diagnosis. For qualitative elasticity expression, the muscle-to-lymph nodes strain ratio index was computed. The final diagnosis was established based on biopsy, pathological results or follow-up.

Results: Benign lymph nodes presented a soft appearance (type1 and 2). The moderate rigid appearance (type 3) and the stiff pattern (type 4 and 5) were encountered in malignant lymph nodes (lymphoma and metastatic lymph nodes from laryngeal, parotid, breast and rectal tumor). The muscle-to-lymph nodes strain ratio index has low values (0.12 - 1.11) in inflammatory lymph nodes. An intermediate muscle-to-lymph nodes strain ratio index was encountered in Hodgkin lymphoma (1.55-1.91) and non Hodgkin lymphoma (2.21 - 3.54 in), respectively. The muscle-to-lymph nodes strain ratio index has higher values in metastatic lymph nodes (2.60 - 13.24).

Conclusion: Sonoelastography represents a new and promising imaging method for the better characterization and differentiation of superficial lymph nodes.

11-06-10
US-ELASTOGRAPHY IN THE DIFFERENTIAL DIAGNOSIS OF BENIGN AND MALIGNANT THYROID NODULES.
Department of Experimental Endocrinology and Cardiovascular Prevention, Policlinico MultiMedica, IRCCS, Milan, Sesto San Giovanni, Italy.

BACKGROUND: Ultrasound (US)-elastography is a newly developed imaging technique for the reconstruction of tissue stiffness by measuring the degree of tissue's deformation in response to the application of an external force. This technique has previously been shown to be useful in the differential diagnosis between benign and malignant tumors.

METHODS: The objective of this study was to assess the diagnostic accuracy of US-elastography in the differential diagnosis of thyroid cancer, using the cytologic/histopathologic analysis as the reference standard. A total of 67 consecutive patients with thyroid nodules who were referred to the Thyroid Unit at the Policlinico MultiMedica were enrolled in this prospective study between January and December 2006. Eighty-six nodules in these patients were examined by US B-mode, US color-power-Doppler, and US-elastography. Nodules were subjected to fine-needle aspiration biopsy and patients with a reading of malignant or indeterminate had thyroid surgery. The final diagnosis was based on the cytology reading in those who did not have surgery and the histopathology reading in those who had surgery. US-elastography scores were based on four classes of tissue stiffness (class 1 for soft nodules; class 2 and 3 for nodules with an intermediate degree of stiffness; class 4 for anelastic lesions).

RESULTS: Seventeen nodules were malignant and 69 were benign. Sensitivity and specificity of the US-elastography for thyroid cancer diagnosis were 94.1% (16/17) and 81% (56/69), respectively. The positive and negative predictive values were 55.2% (16/29) and 98.2% (56/57), respectively. The accuracy of the technique was 83.7%.

CONCLUSION: US-elastography is a promising technique that, combined with other US modalities, is easy and rapid to perform and can help to identify thyroid nodules that are likely to be malignant. An important limitation is probably lack of sensitivity for follicular thyroid carcinoma.

ULTRASOUND ELASTOGRAPHY QUICKLY IDENTIFIES MALIGNANT THYROID NODULES
Diagnostic Imaging, May 19, 2008
by Wendy Despain

Ultrasound elastography provides an accurate diagnosis for malignant thyroid nodules about eight out of 10 times, according to Italian researchers. Elastography has previously shown promise in the diagnosis of breast and prostate cancers.

Dr. Carmela Asteria and colleagues at the Policlinico MultiMedica, IRCCS, in Milan published their research in the May 1 issue of Thyroid. They studied 67 consecutive patients referred to their practice between January and December of 2006.

The researchers examined each patient using B-mode ultrasound, color power Doppler ultrasound, and ultrasound elastography. A total of 86 nodules were identified and tested with fine-needle
aspiration biopsy. Those nodules identified as malignant or indeterminate by biopsy were removed in surgery, and histological findings after surgery showed 17 were malignant.

The investigators compared the surgical and biopsy findings with the ultrasound elastography results and found the technique had a positive predictive value of 55.2% and negative predictive value of 98.2%. Sensitivity was 94.1%, and specificity was 81%. It was considered 83.7% accurate.

The researchers concluded that ultrasound elastography is a promising diagnostic tool for quickly and easily identifying malignant thyroid nodules, although they noted a lack of sensitivity for follicular thyroid carcinoma.

ELASTOSONOGRAPHY OF THYROID LESIONS

[Article in French]

Service d’Ultrasons, CHRU Tours, Hôpital Bretonneau, 37044 Tours Cedex 1. tranquart@med.univ-tours.fr

While ultrasound is the imaging modality of choice for diagnosis of thyroid lesions, characterization remains limited and tissue diagnosis frequently is required for management. The availability of additional tools such as elastography may improve lesion characterization and direct management.

MATERIALS AND METHODS: A total of 96 patients (11 males and 85 females; 58+/−24 years) referred for fine needle aspiration (FNA) of mainly solid thyroid nodules 9-32 mm in diameter underwent conventional US and elastosonography. Results on elastography were correlated with histological results from FNA and classified as follows: suspected malignant lesion, suspected benign lesion, suspicious, indeterminate.

RESULTS: The nodules were classified as follows: 95 nodules were soft (classes I and II) and 13 nodules were hard (classes III and IV). No cancers were detected in class and II lesions and 6 cancers were detected in class III and IV lesions. FNA provided insufficient cellular material for diagnosis in 5 class I-II nodules and 2 class III-IV nodules.

CONCLUSION: Real-time elastosonography may be a useful adjunct to conventional US in the evaluation and characterization of thyroid nodules allowing identification of patients at high risk of malignancy for whom tissue diagnosis and/or close follow-up is required.

J Radiol. 2008 Jan;89(1 Pt 1):35-9.

ULTRASOUND ELASTOGRAPHY IN THYROID CARCINOMA: WHAT IS ITS RELEVANCE?

Presenter: Rahul Dharmadhikari
Co-authors: David Richardson, Sarah Johnson
Newcastle Royal Infirmary, UK

Purpose: Assessing accuracy of Ultrasound Elastography to differentiate benign from malignant thyroid tumours.

Materials and Methods: The study involved 30 patients who underwent thyroid ultrasound elastography and biopsy at our institution from May 2005 to June 2006. Real time Elastography was performed using Hitachi EUB-8500 with a 6-13 MHz linear array probe. The Elastography patterns were colour coded depending on appearances using a preset colour code as hard, mixed and soft.
Biopsies were taken from one/two sites and sent for cytology and positive specimens for subsequent histology. The results were correlated to determine accuracy of the procedure.

Results:

The 30 patients involved in the study had 34 biopsies. 22 biopsies were classified as soft or diffusely soft nodules. 6 had mixed Elastography appearances and 6 patients had a hard nodule on Elastography. Total 2 cancers were confirmed on histology both of which were in hard nodules. Of the 34 biopsies, 6 (18%) were hard on Elastography, but 100% of the cancers were found in hard nodules.

Conclusions:

Elastography works on the principle that malignant lesions are harder than benign lesions as 100% malignancies were found in hard nodules, if a nodule is soft on Elastography the indication for a biopsy is questionable. Also in a multinodular goitre Elastography can be used to target a particular nodule for biopsy which is hard on Elastography.

Clinical Relevance/Application:

If further studies validate these findings, there will be a significant reduction in the number of thyroid biopsies performed and a massive increase in the yield from the performed biopsies.

Radiological Society of North America 93rd Scientific Assembly and Annual Meeting November 25th – 30th, 2007, Chicago, USA

CLINICAL EVALUATION OF ELASTOGRAPHY FOR THE DIFFERENTIAL DIAGNOSIS OF THYROID FOLLICULAR TUMORS

N. Fukunari¹, K. Arai¹, A. Nakamura¹, S. Sakaue¹, T. Mitake²; ¹Yokohama/JP, ²Chiba/JP

Purpose: The diagnosis and management of follicular cancer of the thyroid gland remains a controversial topic. The aim of this study was to evaluate the clinical usefulness of elastography imaging for the differential diagnosis of thyroid follicular lesions.

Methods and Materials: 88 follicular tumors were examined by elastography. The images of thyroid follicular lesions were recognized as four typical patterns as follows: Pattern 1 - nodule is relatively homogenous and colored with light green. Pattern 2 - the center of nodule is colored with green and its periphery is colored with blue. Pattern 3 - nodule is mixed-colored with light green and red. Pattern 4 - the whole tumor is hard and displayed in blue.

Results: All the follicular tumors were surgically and histopathologically diagnosed finally. In this series, 44 hyperplastic nodules, 28 follicular adenomas and 16 follicular cancers were found. Of the 72 benign thyroid nodules, 60 cases demonstrated Pattern 1, 3 cases Pattern 2 and 9 cases Pattern 3. Of the 16 follicular cancers, on the other hand, 1 case was Pattern 1, 14 cases Pattern 2, and 1 case Pattern 3.

Conclusion: In follicular cancers, the major elastography pattern was Pattern 2. Assuming Pattern 2 to be malignant and others to be benign, 69 of 72 benign tumors and 14 of 16 follicular cancers were accurately diagnosed, yielding a sensitivity of 87.5%, a specificity of 95.3%, and an accuracy of 94.3%. Elastography can provide new useful information for the differential diagnosis of thyroid follicular tumors.

Radiological Society of North America 93rd Scientific Assembly and Annual Meeting November 25th – 30th, 2007, Chicago, USA

ELASTOGRAPHY: NEW DEVELOPMENTS IN ULTRASOUND FOR PREDICTING MALIGNANCY IN THYROID NODULES.

Rago T, Santini F, Scutari M, Pinchera A, Vitti P. (Department of Endocrinology University of Pisa.)

Background: Elastography is a newly developed dynamic technique that employs ultrasound (US) to
provide an estimation of tissue stiffness by measuring the degree of distortion under the application of an external force. US elastography has been applied to differentiate malignant from benign lesions.

Patients: This study included 92 consecutive patients with a single thyroid nodule who underwent surgery for compressive symptoms or suspicion of malignancy on fine needle aspiration (FNA) cytology. Tissue stiffness on US elastography was scored from 1 (greatest elastic strain) to 5 (no strain).

Results: On US elastography score 1 and 2 were found in 49 cases, all benign lesions; score 3 in 13 cases, 1 carcinoma and 12 benign lesions; score 4 and 5 in 30 cases, all carcinomas. Thus, the elasticity scores 4-5 were highly predictive of malignancy (p<0.0001) with a sensitivity of 97%, a specificity of 100%, a positive predictive value of 100% and a negative predictive value of 98%. In 32 patients with an indeterminate FNA result the conventional US was not predictive of malignancy, while an US elastographic score 4-5 was observed in 6/7 (86%) patients with carcinoma on histology, and score 1-3 in all the 25 patients with benign lesions.

Conclusion: US elastography has great potential as an adjunctive tool for the diagnosis of thyroid cancer, especially in indeterminate nodules on cytology. Larger prospective studies are needed to confirm these results and to establish the diagnostic accuracy of this new technique.

J Clin Endocrinol Metab. 2007 Aug;92(8):2917-22

ULTRASOUND HELPS SPOT MALIGNANT THYROID NODULES
NEW YORK (Reuters Health), Sep 12, 2007
Ultrasound elastography shows promise in predicting malignancy in thyroid nodules, according to Italian researchers.

In the August issue of the *Journal of Clinical Endocrinology and Metabolism*, Dr. Paolo Vitti and colleagues at the University of Pisa note that such nodules are common, and the great majority are benign. Fewer than 5% are malignant.

Firmer nodules are associated with an increased risk of malignancy, they add, but this "is highly subjective and dependent on the experience of the examiner."

To evaluate the efficacy of ultrasound elastography in determining tissue stiffness and hence the risk of malignancy, the researchers employed the approach in 92 patients.

All underwent surgery because of compressive symptoms or suspicion of malignancy following fine needle aspiration (FNA) cytology. Thirty-one of the patients (34%) had a final diagnosis of malignancy on histology.

Employing a five-point scale, which rated 1 as the greatest elasticity and 5 as the least, 49 patients with benign lesions had a score of 1 or 2.

Only one of the 13 patients with a score of 3 had cancer, but this was true of all of the remaining 30 patients who had a score of 4 or 5.

Thus, say the investigators, scores of 4 or 5 were highly predictive of malignancy and gave a sensitivity of 97% and a specificity of 100%.

In 32 patients in whom FNA gave indeterminate results, conventional ultrasound was not predictive of malignancy. However, elastography gave a score of 4 or 5 in seven of the eight patients with malignancy, and a score of 3 or less in the remaining 25 patients with benign lesions.

11-06-10
The researchers call for further studies, but conclude that "ultrasound elastography seems to have great potential as a new tool for the diagnosis of thyroid cancer, especially in nodules with indeterminate cytology."

By David Douglas

(J Clin Endocrinol Metab 2007;92:2917-2922.)

EFFICIENCY OF ULTRASONIC ELASTOGRAPHY IN THE DIFFERENTIAL DIAGNOSIS (METASTATIC OR REACTIVE) OF THE ENLARGED CERVICAL LYMPH NODE

Purpose: Evaluation of ultrasonic elastographic appearance of enlarged cervical lymph nodes and exploration of the diagnostic reliability in differentiating between metastatic and reactive cervical lymphadenopathy.

Methods and Materials: Realtime elastography of 60 enlarged cervical lymph nodes (28 metastatic, 32 reactive) from 25 patients (16 men, 9 women; age range: 11-85 years; 14 head-neck cancer, 11 having no malignancies) was performed. All the lymph nodes were evaluated for distribution and the percentage of stiff areas. Then they were classified using a 5-pattern system (1-5). Pattern 1: Stiff areas occupying the whole or almost whole lymph node (LN) with or without a thin rim of peripheral relatively soft areas. Pattern 2: Same as pattern1 with central relatively soft areas. Pattern 3: Stiff areas occupying more than 50% of the LN. Pattern 4: Stiff areas occupying not more than 50% of the LN. Pattern 5: Small stiff areas scattered into relatively soft area of the LN. The cutoff line for metastatic lesions was set between 3 and 4. Patterns 1 to 3 were considered malignant and 4 and 5 were considered reactive. Histopathological results and clinical findings (including CT findings) were considered as reference standard for analysis of elastographic findings.

Results: Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 78.6%, 100%, 100%, 84.2% and 90%, respectively.

Conclusion: Ultrasonic elastography showed excellent performance in the diagnosis of metastatic cervical lymphadenopathy. Due to high specificity of this method, invasive procedures might be reduced when ultrasonic elastographic result is positive for lymphnode metastasis.

European Congress of Radiology, March 9th – 12th 2007, Vienna, Austria

THYROID ELASTOGRAPHY USING CAROTID ARTERY PULSATION FOR DIFFERENTIAL DIAGNOSIS OF THYROID NODULES: PRELIMINARY RESULTS

Dighe M, Bae U, Dubinsky T, Minoshima S, Kim Y, Washington USA

Purpose
To evaluate the feasibility of thyroid elastography using carotid artery pulsation as the compression source and investigate its potential in differential diagnosis of thyroid nodules.

Method and Materials
A pilot study is being conducted at the University of Washington. 22 patients scheduled for a thyroid FNA have so far participated in the study. In contrast to the conventional approach of using external compression in thyroid elastography, pulsation of the carotid artery was used as the compression source. Lateral expansion of the carotid artery during systole compresses the thyroid against the trachea and restores it to the original state during diastole. Baseband ultrasound data of thyroid nodules were acquired using a Hitachi EUB-5500 machine. Strain images were generated off-line and correlated with FNA results. The strain near the carotid artery indicates the amount of compression applied by carotid artery pulsation. A quantitative thyroid stiffness index (TSI) was computed as follows: TSI = Strain near carotid artery / Lowest strain in a thyroid nodule.

11-06-10
RESULTS
For all cases, a thyroid nodule(s) can be distinguished from the surroundings in strain images. Strain variation within a nodule is often observed, indicating stiffness variation inside a nodule. TSI for papillary carcinoma was higher than other lesions, such as follicular neoplasm and nodular goiter, indicating that papillary carcinoma is stiffer than other lesions (p=0.02). This finding is consistent with the in vitro stiffness measurements of thyroid lesions previously reported in the literature.

CONCLUSION
Results indicate pulsation of the carotid artery can serve as a repeatable and operator-independent compression source for thyroid elastography. Thyroid elastography using carotid artery pulsation could potentially guide FNA by helping select lesions to be sampled in order to improve its sensitivity and specificity and/or reduce the number of insufficient cases. In addition, TSI may provide a quantitative measure of thyroid stiffness for differential diagnosis of thyroid nodules.

CLINICAL RELEVANCE/APPLICATION
Thyroid elastography using carotid artery pulsation is an operator-independent method for non-invasive differential diagnosis of thyroid nodules.

--

CLINICAL EVALUATION OF REAL-TIME TISSUE ELASTOGRAPHY (RTE) FOR THE DIFFERENTIAL DIAGNOSIS OF THYROID FOLLICULAR LESIONS

N. Fukunari1, K. Tanaka2, K. Arai1, A. Nakamura1, K. Yamazaki1, K. Ito2, T. Mitake2; 1Yokohama/JP, 2Tokyo/JP

Purpose: The diagnosis and management of follicular carcinoma of the thyroid remains a controversial topic. The aim of this study was to evaluate the clinical usefulness of real-time tissue elastography (RTE) imaging for the differential diagnosis of thyroid follicular lesions.

Methods and Materials: The 56 follicular tumors obtained from 49 patients were examined by gray-scale US imaging, colour Doppler imaging and RTE. A comparative study of these images was made and final diagnosis was determined by histological diagnosis. The images of thyroid follicular lesions obtained by RTE were recognized as four typical patterns as follows: 1) nodule is relatively homogenous and colored with light green, 2) the centre of nodule is colored with green, and its periphery is colored with blue, 3) light green and red mixed inside blue zone and 4) the whole tumor is hard and displayed in blue.

Results: All the follicular tumors were cytologically and histopathologically confirmed. In this series, 30 adenomatous nodules, 21 follicular adenomas and 5 follicular cancers were found. Of the 51 benign thyroid nodules, 48 cases (94.1%) demonstrated pattern 1, and 3 cases demonstrated pattern 3. On the other hand, all the follicular cancer cases manifested as pattern 2.

Conclusion: In follicular cancer, the difference of elasticity from the core and the periphery of the tumor is supposed to be caused by the difference of hypercellularity. RTE can provide new useful information for the differential diagnosis of thyroid follicular lesions.

--

EVALUATION OF THYROID MALIGNANCY USING REAL-TIME TISSUE ELASTOGRAPHY

K. Tanaka1, N. Fukunari2, T. Igarashi1, H. Akasu1, W. Kitagawa1, K. Shimizu1, K. Ito1; 1Tokyo/JP, 2Yokohama/JP

Purpose: The aim of this study was to investigate the improvement of differentiation between benign and malignant thyroid tumors by real-time tissue elastography (RTE).

Methods and Materials: Two hundred thyroid nodular lesions found on B-mode ultrasonography
were examined and evaluated using RTE (EUB-8500, HITACHI). All cases were also compared with the cytological and pathological results.

Result: Unique and characteristic images were obtained by RTE in every type of thyroid nodular disease. Images were mainly divided into four visual types; Pattern 1: colored light green throughout nodule, Pattern 2: colored light green in the center and blue peripherally, Pattern 3: blue zone at base with mixed coloring of light green and sometimes with red, Pattern 4: blue coloring throughout the nodule.

130 tumors were histologically diagnosed as malignancy and consisted of 80 tumors (61.5%) of pattern 4, 17 (13.1%) of pattern 3, 21 (16.2%) of pattern 2 and 12 (9.2%) of pattern 1. In papillary thyroid cancer, 87 of the 100 tumors (87.5%) showed pattern 3 or 4. Especially, lymph node metastasis demonstrated pattern 4. Eight of the 15 follicular cancer cases (53.3%) showed pattern 2.

Conclusion: In the differential diagnosis of thyroid nodules, RTE with simultaneous gray scale imaging provides useful information, especially in follicular tumor and papillary cancer diagnosis.

European Congress of Radiology, March 3rd – 7th 2006, Vienna, Austria

INITIAL EXPERIENCES IN THE USE OF ‘ELASTOGRAPHY’ IN THE ULTRASOUND ASSESSMENT OF THYROID NODULES

Richardson DL, Newcastle

Purpose: ‘Elastography’ is a newly marketed feature available from Hitachi. It measures the different elastic properties of tissues and displays them as a colour map. The aim of the study was to assess whether the additional information obtained helped in the differentiation of benign from malignant thyroid nodules and whether this could be used to direct better biopsies.

Methods: All patients in a 4-week period attending our hospital for thyroid ultrasound were examined by a single operator. Scans were performed initially without ‘Elastography’ and assessment of the likelihood of malignancy made and nodule chosen for biopsy. The ‘Elastography’ was then used and the additional information obtained used to give an assessment of malignancy and suggest a nodule for biopsy. Biopsies were then performed (of more than one nodule if necessary).

Results: Of the first 20 patients scanned there were 3 patients where the additional ‘Elastography’ information suggested that a different nodule should be biopsied or a particular part of a nodule should be targeted. The cytological reports are awaited. In the remaining 17 where a typical benign multinodular goitre was seen with conventional ultrasound, the ‘Elastography’ demonstrated ‘soft’ nodules giving an additional feature of benign disease.

Conclusion: In this preliminary study ‘Elastography’ helped in all patients: giving another sign of benign disease or by suggesting a more malignant appearing nodule for biopsy.

British Medical Ultrasound Society Annual meeting, December 13th – 15th, 2005, Manchester, UK

CLINICAL EVALUATION OF REAL-TIME TISSUE ELASTOGRAPHY (RTE) FOR THE DIFFERENTIAL DIAGNOSIS OF THYROID FOLLICULAR LESIONS.

Nobuhiro Fukunari, Ito Hospital, Tokyo, JAPAN

PURPOSE: The diagnosis and management of follicular carcinoma of the thyroid gland remains a controversial topic. Fine needle aspiration, although very sensitive with other types of thyroid cancer, has limited accuracy with follicular lesions. Color-Doppler (CD) imaging has been expected for the differential diagnosis between follicular adenoma and follicular carcinoma, otherwise, the findings obtained by CD imaging could not easily confirmed by cytological and pathological methods. The aim of this study was to evaluate the clinical usefulness of Real-time tissue elastography (RTE) imaging for the differential diagnosis of thyroid follicular lesions.

11-06-10
METHOD AND MATERIALS: The 56 follicular tumors obtained from 49 patients were examined by gray-scale US imaging, CD imaging and RTE. Fine needle aspiration cytology was performed in all lesions under US guidance and the site of needle insertion was decided by RTE. A comparative study of these images was made and final diagnosis was determined by the cytological and histological diagnosis. The images of thyroid follicular lesions obtained by RTE were recognized as four typical patterns as follows, Pattern 1: nodule is relatively homogenous and colored with light green. Pattern 2: the center of nodule is colored with green or sometimes with mix of light green and red. And its periphery is colored with blue. Pattern 3: light green and red mixed inside blue zone. It shows tumor mixed with hard part and relative soft part. Pattern 4: the whole tumor is hard and displayed in blue.

RESULTS: All the follicular tumor was cytologically and histopathologically diagnosed finally. In this series, 30 adenomatous nodules, 21 follicular adenomas and 5 follicular cancers were found. Of the 51 benign thyroid nodule, 48 cases (94.1%) demonstrated as Pattern 1, 3 cases demonstrated as Pattern 3. On the other hands, all the follicular cancer were recognized as Pattern 2.

CONCLUSIONS: In follicular cancer, the difference of ealasticity from core of the tumor and periphery of the tumor is supposed to be caused by the difference of hypercellularity. RTE can provide new useful information for the differential diagnosis of thyroid follicular lesions.

Radiological Society of North America 91st Scientific Assembly and Annual Meeting, November 27th – 30th 2005, Chicago, USA

CLINICAL EVALUATION OF THYROID TUMOR WITH REAL-TIME TISSUE ELASTOGRAPHY.

Department of Surgery, Nippon Medical School, Tokyo, JAPAN; Ito Hospital, Tokyo, JAPAN; Hitachi Medical Corporation, Tokyo, JAPAN.

Aims: Various practical difficulties exist in realizing an objective technique for visualizing palpable thyroid tumors. In this study, we have explored the feasibility of using Elastography technique for the clinical evaluation of thyroid tumors. We will discuss the technique and the clinical outcome of this study.

Methods: Sixty cases with nodular lesions (40 papillary thyroid cancers, 8 follicular thyroid cancers, 12 adenomatous goiters, and 5 malignant lymphomas) found by ultrasound B-mode were examined and evaluated with the Elastography (EUB-8500, HITACHI, Japan). The results of Elastography were compared against the cytology, the cut section, the pathology, and with the images of computed tomography.

Results: Using Elastography, unique and characteristic images were obtained in every type of thyroid nodular disease. Elastography images were classified into 4 types: Pattern 1, light green throughout the inside of the nodule; Pattern 2, light green in the center and blue in the periphery of the nodule; Pattern 3, blue base with mixed colors of light green and red; and Pattern 4, blue in the entire nodule. (Figure 1) Papillary thyroid cancer images mainly showed Pattern 3 or 4, while lymph node metastasis specifically had the images of Pattern 4. Follicular thyroid cancer showed Pattern 2. Adenomatous goiter showed diffuse light green (Pattern 1).

Conclusions: Elastography provides new information for diagnosing thyroid tumors and helps with deciding therapy. In follicular lesions, it shows distinct differences in tissue elasticity between the peripheral zone and the center. It is possible to see the presence of lymph node metastasis in papillary thyroid cancer, yielding important information for clinical diagnosis. Thus, we believe that Elastography will help in creating treatment plans by providing new substantial clinical information.

Figure 1: Proposed Clarification of Elastography for Thyroid Tumors
CLINICAL EVALUATION OF REAL-TIME TISSUE ELASTOGRAPHY (RTE) FOR THE DIFFERENTIAL DIAGNOSIS OF THYROID FOLLICULAR LESIONS.

Nobuhiro Fukunari, Kumi Tanaka, Kiminori Sugino, Koichi Ito, Kunihiko Ito
Diagnostic Imaging and Surgery, Ito hospital, Tokyo, Japan 150-8303, Nippon Medical School

PURPOSE
The diagnosis and management of follicular carcinoma of the thyroid gland remains a controversial topic. Fine needle aspiration, although very sensitive with other types of thyroid cancer, has limited accuracy with follicular lesions. Color-Doppler (CD) imaging has been expected for the differential diagnosis between follicular adenoma and follicular carcinoma. The aim of this study was to evaluate the clinical usefulness of Real-time tissue Elastography (RTE) imaging for the differential diagnosis of thyroid follicular lesions.

METHOD AND MATERIALS
The 56 follicular tumors obtained from 49 patients were examined by gray-scale US imaging, CD imaging and RTE. Fine needle aspiration cytology was performed in all lesions under US guidance and the site of needle insertion was decided by RTE. A comparative study of these images was made and final diagnosis was determined by the cytological and histological diagnosis. The images of thyroid follicular lesions obtained by RTE were recognized as four typical patterns as follows, Pattern 1: nodule is relatively homogenous and colored with light green. Pattern 2: the center of nodule is colored with green or sometimes with mix of light green and red. And its periphery is colored with blue. Pattern 3: light green and red mixed inside blue zone. It shows tumor mixed with hard part and relative soft part. Pattern 4: the whole tumor is hard and displayed in blue.

RESULTS
All the follicular tumor was cytologically and histopathologically diagnosed finally. In this series, 30 adenomatous nodules, 21 follicular adenomas and 5 follicular cancers were found. Of the 51 benign thyroid nodule, 48 cases (94.1%) demonstrated as Pattern 1, 3 cases demonstrated as Pattern 3. On the other hands, all the follicular cancer was recognized as Pattern 2.
CONCLUSIONS
In follicular cancer, the difference of elasticity from core of the tumor and periphery of the tumor is supposed to be caused by the difference of hypercellularity. RTE can provide new useful information for the differential diagnosis of thyroid follicular lesions.

XVIII th Congress of European Federation of Societies for Ultrasound in Medicine and Biology, 25th – 27th September, 2005, Geneva, Switzerland