Hitachi Real-time Tissue Elastography:

Publications & International Communications

Clinical Abstracts
Hitachi Real-time Tissue Elastography for Musculoskeletal Applications
DISTINCT TISSUE SOFTENING LINKED TO MUSCULOSKELETAL DISORDERS CAN BE DETECTED IN REAL-TIME STRAIN IMAGING
Diagnostic Imaging Europe, 01 June 2009

By Andrea S. Klauser, M.D., Tobias De Zordo, M.D., Ralph Faschingbauer, M.D.

Real-time sonoelastography is a relatively new technique that can assess the elastic properties of tissues. Elastography is based on the principle that the compression of tissue produces strain (displacement). This strain is lower in tissue that is hard and higher in tissue that is soft.

![Physical Principle of Strain Imaging](image)

FIGURE 1. Displacement due to compression varies according to tissue stiffness. Displacement in soft tissue is high, whereas stiff tissue shows no or very little displacement.

The principle of strain imaging, or elastography, was first described in 1991. A fast cross-sectional technique, based on real-time elastographical imaging, was described in 1999. Real-time sonoelastography (RTSE) allows this strain to be measured and displayed in real-time (Figures 1 and 2).

It is sometimes difficult, or even impossible, to distinguish pathological tissue from surrounding healthy tissue on conventional ultrasound. The two regions often present with the same echogenicity. Changes in the tissue’s elasticity that are due to inflammation and tumors can, however, be detected on RTSE.

![Image of RTSE](image)

FIGURE 2. Displacement is encoded in different colors: “hard” tissue is blue and “soft” tissue red. Conventional ultrasound image of phantom is homogenous, and shows only light shadowing dorsal to undefined structure. RTSE reveals well-defined, hard structure.

Although RTSE is not yet used in routine clinical practice, it has been shown to be useful in the
differential diagnosis of breast, thyroid, and prostate cancers. Researchers are also looking at the role of this technology in lymph node and liver characterization. Our group is the first to apply RTSE to musculoskeletal disorders.

Tendinopathy is a pathology found most commonly in athletes. Systemic disorders, such as psoriasis, rheumatoid arthritis, and spondyloarthopathies, can also affect tendons. Although the etiology is believed to be multifactorial, pathogenesis is mainly the same in all pathologies. Repetitive microtrauma, vascular alterations, and autoimmune processes produce histopathological changes in tendons, such as hypoxic, mucoid, calcifying, or lipid degenerations. These microscopic alterations may result in tendon thickening, which in turn can lead to partial tears or full-thickness ruptures.

Clinical differentiation among tendinopathy, partial tears, and paratendinitis is challenging, and imaging is needed to make a definite diagnosis. The main modalities used to do this are ultrasound and/or MRI, but both have proved controversial. Ultrasound has the advantage of dynamic imaging, which allows for better detection of adhesions and fiber dehiscence in partial tears compared with MRI. On the other hand, MRI enables the better detection of increased fluid (edema) that may be present in tendinosis.

ASSESSMENT OF PERFORMANCE

We investigated the performance of RTSE in the detection of Achilles tendinopathy and lateral epicondylitis (tennis elbow). All examinations were performed using a linear array transducer with a frequency of 6 to 13 MHz. We used an EUB-8500 ultrasound system when examining the Achilles tendon and an EUB-9000 system when studying the elbow (Hitachi Medical). Tissue elasticity distributions were calculated in real-time (up to 30 frames per second). Results were represented in color over the conventional B-mode image.

We examined 80 Achilles tendons in healthy volunteers and 25 tendons in patients complaining of inflammation and pain in the Achilles region (achillodynia). Force applied to the Achilles tendon was adjusted appropriately according to the visual indicator for compression seen on the video screen. Local strain was computed under slight compression and decompression. RTSE showed that the tendons normally had a hard structure, but that distinct softening had occurred in the patients' Achilles tendons (Figures 3 through 5). Alterations were most often observed in the midportion of the Achilles tendon (80%). RTSE had a mean sensitivity of 94%, specificity of 99%, and accuracy of 97% when compared with clinical examination. A strong correlation was found with conventional ultrasound findings ($r = 0.89$).

Our assessment of lateral epicondylitis comprised 38 elbows from patients with clinically suspected tennis elbow and 44 asymptomatic elbows. Once again, the healthy volunteers' elbows revealed a hard tendon structure, whereas a statistically significant softening could be observed in the patients' elbows (Figures 6 and 7). RTSE also detected lateral collateral ligament and overlaying fascia involvement. Comparison with clinical examination as the reference standard showed RTSE to have a sensitivity of 100%, specificity of 89%, and accuracy of 94%. Correlation with ultrasound findings was good once again ($r = 0.900$).
These results show that RTSE is of value in the diagnosis of tendinopathy, at least in Achilles tendon and common extensor origins at the elbow. Although these are preliminary results, significant differences between asymptomatic and symptomatic tendons were found in both cases.

The sensitivity and specificity of RTSE were almost identical to ultrasound in diagnosing Achilles tendinopathy. Slightly better results for RTSE were obtained when diagnosing tennis elbow. Both studies uncovered more tendon alterations when RTSE was used instead of conventional ultrasound, perhaps indicating that RTSE is better at detecting tendinopathy at an early stage. This suggestion might be further supported by the frequent detection on RTSE of contralateral Achilles tendon involvement, which was found only in patients and not in healthy volunteers.

Our study population was relatively small. Further longitudinal studies should now be performed to verify our preliminary findings. One possible weakness in our study was the use of clinical examination as the gold standard. No other accurate, noninvasive reference standard is available, however. Results were correlated with ultrasound, which is considered to be one of the methods of choice for diagnosing tendinopathy. Correlation with MRI will be examined in future studies.

Another limitation is the operator dependency of this freehand technique. Care was taken to obtain reproducible images, but we did not evaluate reproducibility in any detail. Neither interobserver nor intraobserver variability was calculated.

Operator dependency is a known challenge for all imaging techniques based on ultrasound. We attempted to obtain appropriate images by moderating the pressure exerted with the ultrasound probe, avoiding overly high and low pressures. The aim was to maintain a near-proportional relationship between pressure exerted and tissue strain. This could be monitored using the visual indicator scale on the machine. In images in which the pressure decreased below a certain level, the pattern of the elasticity image started to change drastically.

In summary, our preliminary results using RTSE for the first time in musculoskeletal disorders revealed that the elastic properties of normal tendons are altered under pathological conditions and that this distinct intratendinous softening can be detected. We believe that more lesions could be found by using this method instead of conventional ultrasound and that this could result in
earlier and more accurate diagnoses of tendinopathy. This new technique might, in the future, be used as an adjunct to conventional ultrasound to increase diagnostic accuracy. It could also potentially be used as a screening tool, allowing athletes to modify their exercise regimen to prevent further tendon damage.

References

06-07-09
REAL-TIME SONOELASTOGRAPHY OF ACHILLES TENDONS: COMPARISON TO CLINICAL FINDINGS AND ULTRASOUND FINDINGS

This new technique might, in the future, be used as an adjunct to conventional ultrasound to increase diagnostic accuracy. It could also potentially be used as a screening tool, allowing athletes to modify their exercise regimen to prevent further tendon damage.

REFERENCES

and conventional Ultrasound (US).

METHOD AND MATERIALS
Ethics committee approval and informed written consent were obtained. Achilles tendons of 25 consecutive patients with chronic Achilles tendinopathy (11 men, 14 women; mean age, 55 years; range, 37-79 years) and 25 healthy volunteers (11 men, 14 women; mean age, 46 years; range 25-76 years) were examined by clinical examination, US, and SEL, by assessing the proximal-, middle- and distal third. Clinical findings were used as reference standard and were compared to US and SEL findings. By using US, tendon thickening and/or intratendinous focal areas were defined as pathologic and by using SEL tissue softening was defined as pathologic. Contralateral tendons were assessed separately.

RESULTS
In healthy volunteers, normal findings were present in 100% of clinical examinations, in 100% of US images and in 93% of SEL images. In patients, alterations were found in 61% of clinical examinations, in 59% of US images and in 68% of SEL images. SEL showed a sensitivity of 94%, specificity of 99%, and accuracy of 97%, while US showed a sensitivity of 93%, specificity of 100% and accuracy of 99%. Correlation (κ) between SEL and US was 0.89. Furthermore, asymptomatic contralateral tendons of patients showed a more common involvement by using SEL (16 patients) when compared to US (13 patients).

CONCLUSION
SEL showed good sensitivity and specificity in the detection of alterations in Achilles tendinopathy with good correlation to conventional US. SEL detected slightly more tendon alterations in symptomatic Achilles tendons, but also of the asymptomatic contralateral tendons in patients, which might be due to an earlier detection of tendinopathy by using SEL. However, follow-up studies are required to confirm our preliminary results.

CLINICAL RELEVANCE/APPLICATION
Detection of tissue softening could add knowledge regarding early development of Achilles tendinopathy, which might have an impact on therapeutic decisions.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA

VALUE OF REAL-TIME SONOELASTOGRAPHY IN LATERAL EPICONDYLITIS: COMPARISON WITH CLINICAL EXAMINATION, ULTRASOUND, AND POWER DOPPLER ULTRASOUND
Tobias de Zordo, Innsbruck, Austria

PURPOSE
To evaluate Sonoelastography (SEL) in the assessment of common extensor tendon origins in healthy volunteers and patients complaining of lateral epicondylitis and compare these findings to clinical examination, and Ultrasound (US) findings. Correlation to Power Doppler Ultrasound (PDUS) and pain score, using a visual analog scale (VAS), was performed.

METHOD AND MATERIALS
The study was approved by the institutional review board, and informed consent was obtained. In a prospective analysis 38 elbows of 32 consecutive patients (10 men, 22 women; mean age, 52.63 years; range, 38-70 years) complaining of lateral epicondylitis and 44 asymptomatic elbows of 28 healthy volunteers (11 men, 17 women; mean age, 43.64 years; range, 24 - 89 years) were assessed by clinical examination, US, PDUS and SEL. Common extensor tendon abnormalities detectable by US were defined as hypo- or hyperechoic intratendinous lesions, whereas pathological alterations detectable by SEL were defined as intratendinous tissue softening. Presence of intratendinous hyperemia by using PDUS was correlated and additionally pain was recorded by using a VAS score. Clinical examination was used as standard of reference.

RESULTS
Using SEL a sensitivity of 100%, a specificity of 89%, an accuracy of 94%, a positive predictive value of 88% and a negative predictive value of 100% was found, whereas US showed a sensitivity of 95%, a specificity of 89%, an accuracy of 91%, a positive predictive value of 88% and a negative predictive value of 95%. SEL showed good correlation to US findings (R > .900). No correlation
between US and PDUS or SEL and PDUS could be detected, but PDUS showed a strong correlation with VAS score.

CONCLUSION
SEL showed good sensitivity and sensitivity in the detection of lateral epicondylitis, whereas SEL was slightly more sensitive than US in detecting lateral epicondylitis. SEL could represent a diagnostic adjunct to US and PDUS for a detailed diagnostic approach in patients presenting with lateral epicondylitis.

CLINICAL RELEVANCE/APPLICATION
Detection of tissue softening in lateral epicondylitis by using SEL can be considered as a diagnostic adjunct besides US and PDUS.

Radiological Society of North America 94th Scientific Assembly and Annual Meeting November 30th – December 5th, 2008, Chicago, USA
SONOELASTOGRAPHY BREAKS NEW GROUND IN MUSCuloskeletal imaging

Diagnostic Imaging RSNA 2008, (December 15, 2008)

By: H. A. Abella

Researchers from Austria, Italy, and Egypt are taking a leap of faith to evaluate several possible ultrasound elastography applications in musculoskeletal radiology. Everyone from weekend warriors to elite athletes may benefit if the test is proven effective, according to papers released at the 2008 RSNA meeting.

Musculoskeletal radiologists seem keen on moving toward more quantitative, functional studies. But they need the right imaging tools to explain how MSK structures work instead of simply describing their appearance. Elastography -- performed by ultrasound or MRI -- has emerged as a way to characterize the mechanical properties of tissue. It has been praised as a useful diagnostic tool in breast, prostate, cervix, and thyroid applications.

Now musculoskeletal radiologists could also use real-time sonoelastography for diagnosis of tissue softening or tears of heel, elbow, and shoulder tendons.

Associate professor of radiology Dr. Andrea Klauser and colleagues at the Medical University of Innsbruck compared sonoelastography and standard sonography to assess Achilles tendons in 25 patients with chronic tendinopathy and 25 healthy subjects. They found elastography just as accurate to detect tendon abnormalities in symptomatic and asymptomatic patients.

"Clinical differentiation between tendinopathies and other debilitating conditions is sometimes difficult," said abstract presenter Dr. Tobias De Zordo, a researcher with the Sonoelastography Project Innsbruck. "Sonoelastography showed good sensitivity and specificity in the detection of alterations of Achilles tendinopathy in good correlation with conventional ultrasound."

During the same scientific session, investigators from the University of Genoa presented results of their own sonoelastography study of Achilles tendon degeneration in healthy athletes. They enrolled 16 patients referred for tendon pain associated with sport activity plus 24 healthy controls. They found sonoelastography useful for characterization of stiffness in symptomatic tendons compared to normal ones.

In another study by the Sonoelastography Project Innsbruck, researchers used the modality to assess 32 patients previously diagnosed with elbow tendon lesions and 28 healthy volunteers. They compared results with those of the clinical exam plus standard and Doppler sonography. Sonoelastography provided sensitivity, specificity, accuracy, and positive and negative predictive values of 100%, 89%, 94%, 88%, and 100%, respectively, compared with 95%, 89%, 91%, 88%, and 95% for conventional sonography. Findings suggest that elastography could work as a diagnostic adjunct to power Doppler for a more detailed assessment of patients presenting with elbow tendon lesions.

Also getting a foothold in the MSK breakthrough, researchers from Giza, Egypt, used sonoelastography to assess the supraspinatus tendon in 20 healthy volunteers and 40 patients complaining of shoulder pain. They compared results with MRI and found that sonoelastography was a sensitive method for diagnosis of rotator cuff tears.

Further studies will tell how effective sonoelastography would be in diagnosing pathology, said session chair Dr. Jon A. Jacobson. Researchers need to define the diagnostic and prognostic benefit of elastography over gray-scale, color, or power Doppler imaging.

"There are potential applications," Jacobson told *Diagnostic Imaging*. "What remains to be seen is how much of that can be used clinically."

ULTRASOUND ELASTOGRAPHY SHOWS STRENGTH FOR DIAGNOSING ROTATOR CUFF TEARS

By Erik L. Ridley

AuntMinnie staff writer

January 15, 2009

Ultrasound elastography can be a sensitive means of diagnosing rotator cuff tears in patients with painful shoulders, according to research from Alfa Scan Radiology Center in Giza, Egypt.

"Detection of tissue softening by elastography might predict tendonitis at an early stage before MRI, as the examination can be done, unlike MRI, guided by the pain location," said Dr. Naglaa Abdel Razek.
The research team sought to assess real-time ultrasound elastography for evaluating the supraspinatus tendon, studying 20 healthy volunteers and 40 patients presenting with shoulder pain. Elastography was performed using an EUB-7500 ultrasound system (Hitachi Medical, Tokyo) and electronic-array transducers of 7.5 and/or 13 MHz. Razek presented the research during a scientific session at the 2008 RSNA meeting in Chicago. Tendon parts were evaluated by a semiquantitative score of different colors representing stiff tissue (blue) to softer tissue (green, yellow, and red).

In B-mode scanning, reviewers examined tendon insertion and the midportion and musculotendinous junction for tendon thickening, focal intratendinous abnormal high echogenicity, interruption of fibers, calcification, paratenonitis, and bursitis, according to Razek. The elastography findings were then compared with the B-mode results, and for 20 patients, elastography was also compared with MRI findings. Arthroscopy was performed only when elastography was positive and MRI had a negative finding, Razek said.

In the 20 healthy volunteers, elastography showed blue color throughout the tendon, which is consistent with stiff normal tendon tissue and normal findings at grayscale, Razek said. In the patients with partial tears, elastography showed intratendinous color alterations (green, yellow, and red) not reaching the bursal or articular aspects. Patients with full tears showed color alterations reaching the bursal or articular surfaces. The differences in tendon stiffness between the healthy volunteers and the patients were statistically significant (p < 0.0001). The elastography and MRI findings also showed good correlation (p < 0.001), Razek said.

"The sensitivity and negative predictive value has been increased from 95% to 97% and from 87% to 93% by adding elastography to the conventional ultrasound technique," she said. Elastography can also be used as an easy reproducible follow-up method to monitor treatment, Razek noted.

"Elastography is suggested as a complementary study to conventional high-resolution ultrasound for diagnosis of rotator cuff tendon tears in patients with painful shoulder," she concluded.

EVALUATION WITH SONOELASTOGRAPHY OF ACHILLES TENDON DAMAGE

Şconfienza LM1, Cimmino MA1, D’auraia MC1, Minetti G1, Garlaschi G1, Silvestri E2

1University of Genova, Italy; 2A.O. San Martina, Genova, Italy

Purpose: Sonoelastography is a recently developed ultrasound (US) technique that allows in vivo assessment of tissue mechanical properties. Up to now, this technique has been mainly used to investigate prostatic tumours and breast masses. The aim of our paper is to evaluate if damaged Achilles tendons show abnormal mechanical properties by sonoelastography.

Methods and materials: Twelve patients referred for unilateral Achilles tendon pain due to overuse associated with amateur sporting activities and 18 healthy controls were studied. US and sonoelastography were performed on 12 symptomatic tendons and 36 control tendons with a system equipped with a 10 - 6 MHz electronic broadband linear array. The array was positioned at the calcaneal enthesis, retro-calcaneal bursa and in 3 different areas of the tendon body. The elastogram colour range was translated in a numeric score. Results were compared by the Kruskall Wallis test.

Results: At grey scale US, symptomatic tendons showed a variety of basic changes in fibrillar pattern (2): increased tendon thickness (12), interruption (5), fragmentation (5), and disappearance of fibrillar echo texture (5). In the control group, we observed 1 case of increased tendon thickness and 5 cases of disappearance of fibrillar echotexture. By sonoelastography, no difference was observed between symptomatic and control tendons at the enthesis and bursa. However, symptomatic tendons bodies were significantly harder than control ones, showing a prevalence of blue to green colour (p < 0.0001).

Conclusions: Sonoelastography shows increased stiffness in symptomatic enlarged Achilles tendons in comparison to normal ones. Long-term studies are needed to evaluate if these findings have a prognostic value.

Ultraschall in Med, 2008, suppl 1, OP9.5
ULTRASOUND ELASTOGRAPHY IN MUSCULOSKELETAL DISORDERS

Botar-Jid C1, Vasilescu D1, Dudea SM1, Damian L2, Badea R3

1Radiology Department, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca;
2Rheumatology Clinic, Emergency Clinical County Hospital, Cluj-Napoca;
33rd Medical Clinic, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca

Aim: The purpose of the study is to assess the ultrasound elastographic appearance of musculoskeletal disorders (traumatic lesions, miosytis, neuro-muscular disease, inflammatory lesions).

Methods: The study group consists of 50 patients with musculoskeletal disorders who were examined in the interval May 2007 - January 2008. All patients were assessed using 2D ultrasound and elastography. The results were compared with clinical, biochemical and electromiographical analysis. The goal of the study was to characterize the elastographic appearance of the pathological changes of muscular tissue. Tissue stiffness was analyzed with custom developed hue analysis software.

Results: In traumatic muscular lesions (12 patients), elastography allowed to differentiate hemorrhagic (elastic) from fibrotic (stiff) areas. In miosytis and neuromuscular diseases (22 patients), elastography revealed normal muscular elasticity in the early stages, while in the advanced stages the muscles showed increased stiffness, probably due to replacement by fibrotic tissues. In chronic inflammatory musculoskeletal disorders (pr, SA, 16 patients) elastography allows the assessment of elasticity of the ligaments and tendons. Elastography was used for the follow-up under therapy (25 patients). In cases with favorable evolution, elastography revealed normal elasticity, fibrous scar zones appear like stiff areas while in cases of cystic transformation, elastography reveals a "soft" appearance, as revealed by the increase, respectively decrease of the mean hue level.

Conclusions: Elastography offers the opportunity to assess and grade the elasticity of the soft tissues of the musculoskeletal system. In this respect, it is a promising tool for the diagnosis and follow-up of musculoskeletal diseases, complementing the other imaging methods.

Ultraschall in Med, 2008, suppl 1, OP9.9
extensor tendon insertion showed a significant higher detection of intratendinous color alterations detected by sonoelastography (yellow, red) in comparison to focal lesion detection by using gray scale US (P < 0.001) only. Comparison to healthy volunteers showed significant differences for tendon stiffness (P < 0.0001). Furthermore decreased differentiation of overlying soft tissue structures was found in patients compared to healthy volunteers (P < 0.001).

Conclusions: Sonoelastography seems to be a sensitive method for assessment of extensor tendon insertion alterations in lateral epicondylitis, compared to conventional gray scales US.

Clinical relevance/application: Detection of intratendinous tissue softening might predict progressive tendinosis at different stages. Furthermore decreased peritendinous differentiation of soft tissue layers might reflect peritendinous adhesions. Follow up studies or histopathology is needed for further evaluation of internal alterations detected by sonoelastography in painful lateral elbows.

Radiological Society of North America 93rd Scientific Assembly and Annual Meeting November 25th – 30th, 2007, Chicago, USA

REAL-TIME SONOELASTOGRAPHY IN ACHILLES TENDON OF HEALTHY VOLUNTEERS AND PATIENTS WITH SYMPTOMATIC ACHILLES TENDONS: COMPARISON TO US AND MRI

Presenter: Tobias De Zordo

Abstract co-authors: Hannes Gradl, Gudrun Feuchtner, Paul Rhomberg, Matthias Schurich, Andrea Klauser (Medical University, Innsbruck, Austria)

Purpose: To assess Achilles tendons in healthy volunteers and patients with achillodynia by using Sonoelastography (SEL) compared to B-mode Ultrasound (US) and MRI.

Methods and materials: 50 Achilles tendons in 25 consecutive patients with unilateral complains and 50 Achilles tendons in 25 healthy sex age matched volunteers were examined using US and SEL (Hitachi EUP-8500, L54M, 6-13 MHz). Tendon insertion, mid-portion and musculotendinous junction were examined. 22/25 patients underwent MRI. Grading used for US and MRI was following: Grade 1: normal tendon, Grade 2: thickened, but homogeneous tendon, Grade 3: partial ruptures with or without thickening. Grading for SEL was accordingly: Grade 1: blue, green (hard tissue), Grade 2: (soft tissue), Grade 3: red (softest tissue). Interobserver variability was calculated.

Results: SEL of healthy volunteers showed no Grade 3, but Grade 2 was found in 16% at mid-portion and in 4% at proximal tendon thirds. Patients showed Grade 3 in 64% (16/25) of the distal part, in 80% (20/25) of the mid-portion, and 28% (7/25) of the proximal part. SEL showed good correlation with US (P<0.001, R= 0.864) and MRI (P<0.001, R= 0.844). Asymptomatic contralateral side of patients showed an overall statistical significant difference (P<0.001) compared to healthy volunteers, located in the middle third by using both US (P <0.001) and SEL (P<0.001), for SEL alone in the distal part (p<0.001). Good Interobserver variability was found (2.9%).

Conclusion: SEL detected sensitively alterations in symptomatic Achilles tendons and showed excellent correlation with MRI and US. SEL was more sensitive in detection of subclinical alterations in the proximal and distal tendon parts, and in contralateral Achilles tendons of patients complaining of achillodynia.

Clinical relevance/application: We suppose that SEL could be of help in detection of subclinical disease in Achilles tendons. SEL seems further to improve detection of tissue softening representing tendinosis at a higher stage in achillodynia. However, further studies are needed to prove if SEL can add prognostic information towards possible Achilles tendon rupture as an “End stage” of a degenerative process.

Radiological Society of North America 93rd Scientific Assembly and Annual Meeting November 25th – 30th, 2007, Chicago, USA

ELASTOGRAPHY: IS IT USEFUL?

Professor A Klauser, Innsbruck, Austria

06-07-09
Ophir et al. first described the principle of strain imaging ("elastography") in 1991. This imaging method is capable of visualizing displacements between US image pairs of tissue under axial compression. In order to reduce time consuming calculations Pesavento et al. developed a fast cross sectional technique, based on real-time elastographical imaging. Maximal compression can encode in Red, minimal compression can encode in Blue, between are green and yellow.

In a preliminary study we assessed 18 Achilles tendons, Paratenon and Bursae in healthy volunteers and to compared the findings with 15 patients complaining of achillodynia with real-time sonoelastography. Tendon insertion, midportion and musculotendinous junction were examined and tendon abnormalities as thickening, focal intratendinous lesion, partial tears, calcification paratenonitis and bursitis were evaluated by a semiquantitative score of different colors representing stiff tissue (blue) to more soft tissue (green, yellow, red).

Our results showed tendons in healthy volunteers all blue colored consistent with stiff normal tendon tissue and normal findings at gray scale. Patients in 10 patients and in all patients a significant higher detection of intratendinous color alterations detected by sonoelastography (green, yellow, red) in comparison to gray scale US (P< 0.001). Comparison to healthy volunteers showed significant differences for tendon stiffness (P < 0.0001). Detection of tendon thickening, partial tears and peritendinous alterations showed a good correlation with gray scale US (P < 0.001).

In conclusion Sonoelastography seems to be a sensitive method for assessment of intratendinous Achilles tendon alterations in achillodynia, compared to conventional gray scales US. As clinical relevance detection of tissue softening in achillodynia might predict progressive tendinosis at different stages. Follow up studies or histopathology will be performed for further evaluation of internal alterations detected by sonoelastography in painful Achilles tendons. Further MSK applications can be of value and will be discussed, where identical gray scale values should be differentiated regarding tissue softening as allowed by using Sonoelastography.

ELASTOSONOGRAPHY IN THE EVALUATION OF THE POST-TRAUMATIC MUSCULAR PATHOLOGY.

G. Monetti¹, P. Minafra²

¹Istituto di Scienze Motorie Università degli Studi di Bologna - Italy
²Cattedra di Medicina dello Sport Università degli Studi di Palermo - Italy

Objectives
Assessing reliability of ultrasound examination complemented by elastosonography in the study of distraction muscular lesions resulting fibrotic-scarred.

Materials and methods
Three athletes practicing professional sports were evaluated in the steps after post-trauma muscular distraction of the inferior limb, using a state-of-the-art ultrasound equipment provided with elastosonography method. Such method is known to provide information about the quality of soft tissues, assessing minor or major elasticity, which is significantly useful in the clinical and therapeutic follow-up of muscular lesions. The three athletes aged between 22 and 30, were assessed 4 weeks after trauma.

Results
In all patients the examination showed irregular areas and elastosonography assessed several degrees of altered intrinsic elasticity in site of the previous lesion and especially in peri-lesion areas, that in mere B-mode examination seem unaffected by post-traumatic problems, while in ultrasound they result extremely important to plan the functional recovery of the muscular tissue impaired.

Conclusions
Ultrasound method is universally acknowledged as a first standard examination in distraction muscular traumas, thus allowing immediately appreciating all the areas involved, especially thanks to the dynamic evaluation of the muscular components. The possibility of assessing also the elasticity degree of fibres once scar-formation has been completed is a further complementation of the ultrasound study, considering how difficult it is often to diagnose, in recovery, the real healing of
impaired tissues. Therefore, elastosonography study is a valid support in the clinical and therapeutic follow-up of muscular lesions, allowing a more correct evaluation of the functional recovery in relation to the actual condition of muscular fibres involved in the repair process.

REAL-TIME SONOELASTOGRAPHY IN ACHILLES TENDON: COMPARISON OF FINDINGS BETWEEN HEALTHY VOLUNTEERS AND PATIENTS WITH SYMPTOMATIC ACHILLES TENDONS
A. Klauser1, T. De Zordo1, L. Pallwein1, G. Feuchtner1, V. Smekal1, C. Dejacco2, C. Hoser1, C. Fink1, S.P. Mlekusch1; 1Innsbruck/AT, 2Klagenfurt/AT

Purpose: To assess Achilles tendons, Paratenon and Bursae in healthy volunteers and to compare the findings with patients complaining of achillodynia with real-time sonoelastography.

Methods and Materials: Fifteen patients with 18 painful Achilles tendons and 18 tendons in healthy volunteers underwent real-time sonoelastography (Hitachi EUP-8500, LS4M, 6-13 MHz) and compared it to findings in gray scale sonography (6-13 MHz). Tendon insertion, midportion and musculotendinous junction were examined and tendon thickening, focal intratendinous lesion, partial tears, calcification, paratenonitis and bursitis were evaluated by a semiquantitative score of different colors representing stiff tissue (blue) to more soft tissue (green, yellow, red).

Results: Tendons in healthy volunteers showed all blue coloring, consistent with stiff normal tendon tissue and normal findings at gray scale. Patients showed tendon thickening in 16 tendons, alteration of gray scale echotexture in 10 patients and in all patients a significantly higher detection of intratendinous color alterations detected by sonoelastography (green, yellow, red) in comparison to gray scale US (P < 0.001). Comparison to healthy volunteers showed significant differences for tendon stiffness (P < 0.0001). Detection of tendon thickening, partial tears and peritendinous alterations showed a good correlation with gray scale US (P < 0.001).

Conclusion: Sonoelastography seems to be a sensitive method for assessment of intratendinous alterations in achillodynia. Detection of tissue softening in achillodynia might predict progressive tendinosis at different stages. Follow-up studies or histopathology is needed for further evaluation of internal alterations detected by sonoelastography in painful Achilles tendons.

European Congress of Radiology, March 9th – 12th 2007, Vienna, Austria

VALUE OF REAL-TIME SONOELASTOGRAPHY IN ACHILLES TENDON COMPARISON OF FINDINGS BETWEEN HEALTHY VOLUNTEERS AND PATIENTS WITH SYMPTOMATIC ACHILLES TENDONS
Klauser A, De Zordo T, Pallwein L, Feuchtner G, Smekal V, Mallouhi A, Innsbruck AUSTRIA

PURPOSE
To assess Achilles tendons, Paratenon and Bursae in healthy volunteers and to compare the findings with patients complaining of achillodynia with real-time sonoelastography.

METHOD AND MATERIALS
We studied 15 patients with 18 painful Achilles tendons and 18 tendons in sex and age matched healthy volunteers by using real-time sonoelastography (Hitachi EUP-8500, LS4M, 6-13 MHz) and compared it to findings in gray scale sonography (6-13 MHz). Tendon insertion, mid-portion and musculotendinous junction were examined and tendon abnormalities as thickening, focal intratendinous lesion, partial tears, calcification paratenonitis and bursitis were evaluated by a semiquantitative score of different colors representing stiff tissue (blue) to more soft tissue (green, yellow, red).

RESULTS

06-07-09
Tendons in healthy volunteers showed all blue coloring consistent with stiff normal tendon tissue and normal findings at gray scale. Patients showed tendon thickening in 16 tendons, alteration of gray scale echotexture in 10 patients and in all patients a significant higher detection of intratendinous color alterations detected by sonoelastography (green, yellow, red) in comparison to gray scale US (P < 0.001). Comparison to healthy volunteers showed significant differences for tendon stiffness (P < 0.0001). Detection of tendon thickening, partial tears and peritendinous alterations showed a good correlation with gray scale US (P < 0.001).

CONCLUSION
Sonoelastography seems to be a sensitive method for assessment of intratendinous Achilles tendon alterations in achillodynia, compared to conventional gray scales US.

CLINICAL RELEVANCE/APPLICATION
Detection of tissue softening in achillodynia might predict progressive tendinosis at different stages.
Follow up studies or histopathology is needed for further evaluation of internal alterations detected by sonoelastography in painful Achilles tendons

Radiological Society of North America 92nd Scientific Assembly and Annual Meeting November 26th – December 1st, 2006, Chicago, USA

CORRELATION BETWEEN MR AND SONOELASTOGRAPHY FOR THE EVALUATION OF ACUTE MUSCLE INJURY IN SPORTS PATIENTS
D. Fábrega, L. Fouto;
CREAR, Lisbon, Portugal.

Purpose/Introduction: Muscle injuries are very common in sport. MRI can give a precise grading of lesions, distinguishing between muscle tears that are best treated conservatively and those requiring surgical intervention. Ultrasound studies are faster, more accessible and cheaper. Elasticity imaging has attracted attention as a technique which directly reveals the physical property of tissues and enables visualisation of the change in tissue hardness caused by acute lesions. SonoElastography is a new technique expected to be useful for diagnosis of muscle lesions.

The aim of the study was to find correlation between the MR image and the SonoElastography study and to assess the practical clinical value of SonoElastography in assessment of acute muscle injury.

Subjects and Methods: Patients-4 male and 1 female, age range 28 to 47yrs.; a runner, 2 soccer players, rugby player, no active sport with acute pain after sporting activity. MR study was performed in an open HITACHI 0.3T system and consisted of T2-weighted FSE (TR-3600/Te-125) axial, coronal and sagittal scans, slice thickness 6-8 mm. The patients were evaluated with HITACHI EUB-8500 system with integrated SonoElastography module and 13 MHz ultrasound probe. Elastogram was obtained using freehand manipulation, compressing areas which were more painful, where a distortion of the muscle fibres or of the contour of the fascia was seen, or where direct visualization indicated a tear.

Results: MRI showed hyper intensive signals of lesions in injured muscle in all patients with dimensions: case1-axial 30x20mm, case2-axial 30x25mm, case3 - longitudinal 80mm, case4-100mm, case5- 150mm. In one case (patient 3, female- not active sportsman) a big fluid collection was visualized. In the elastography with compression, a soft lesion with a harder rim with distortion of the fibres was seen. The dimensions of the lesions were: 20x22, 22x10, 62, 67 and 130. In the female patient a strange pattern in the superficial fibres was observed, loss of compression and hyper intensive signal of fluid.

Discussion/Conclusion: In all patients SonoElastography findings correlated with MR image. Elastography allowed visualization of the lesion and the dimensions were assessed. The size of the lesion in MR was larger because of the additional high signal of oedema. Elastography shows the dimensions of the lesion only. Elastography is a promising method for diagnosis of acute muscle injury and the quantification of the elasticity of the fibres. It can improve the discrimination of acute injury, is faster, more accessible, and a more economical method of diagnosis.

European Society for Magnetic Resonance in Medicine and Biology, September 21st – 23rd 2006, Warsaw, Poland
